Classification of additive problems with natural numbers
DOI:
https://doi.org/10.54942/qantuyachay.v1i1.9Keywords:
additive problem, structure of an additive problem, role of a number, place of the unknown, meaning of a number, variation of the middle termAbstract
Additive problems with natural numbers play an important role in teaching and learning processes. Several authors base their reflections on the fact that many additive problems involve a temporal sequence and the different roles of the numbers involved in the problem. These investigations found a great variety of problems. The objective of the present study is to classify additive problems with natural numbers using the analysis-synthesis method, based on the formulation of conjectures relating variables such as structure, role of a number, meaning of the number, place of the unknown and variation of the middle term. It is a positivist paradigm study, quantitative approach, basic type. Among the main conclusions is that in mathematical practices we find classifications by context: formal contextual, mathematical and concrete: extra-mathematical context. By the number of operations: simple of one operation and complex.
Downloads
References
Carpenter, T., & Moser, J. (1983). The Acquisition of Addition and Subtraction concepts, en R. Lesh & M. Landau (eds) Adquisition of Mathematics Concepts and Processes, pp. 7-44. Orlando Florida: Academia Press.
Coello, E., Blanco, B., & Reyes , Y. (2012). Los paradigmas cuantitativos y cualitativos en el conocimiento de las ciencias médicas con enfoque filosófico-epistemológico. EDUMECENTRO, 4(2), 137-146.
Cid, E., Godino D., & Batanero, C. (2004). Sistemas numéricos. En Juan D. Godino, Director, Matemática Para-Maestros. Proyecto Edumat-Maestros.
Diaz, J. (2018). Políticas públicas en propiedad intelectual escrita. Una escala de medición para educación superior del Perú. Revista Venezolana de Gerencia, 23(81), undefined-undefined. [fecha de Consulta 29 de Septiembre de 2019]. ISSN: 1315-9984.
Durand, C., & Vergnaud, G. (1976). Structures addictives et complexité psychogénétique. En: Revue française de pédagogie. Volumen 36, pp. 28-43.
Escurra M., & Salas, E. (2014). Construcción y validación del cuestionario de adicción a redes sociales (ARS). Liberabit, 20(1), 73-91.
Lakatos, I. (1981). El método de análisis y síntesis, en Matemáticas, ciencia y epistemología, vol 2. (Alianza Ed.: Madrid).
Vergnaud, G. (1990). La teoría de los campos conceptuales. CNRS y Université René Descartes. Recherches en Didáctique des Mathématiques, Vol. 10, nº 234A2145XY12 pp. 133-170.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Jorge Enrique Quiroz Quiroz

This work is licensed under a Creative Commons Attribution 4.0 International License.